

Microwave Oscillator Design:

A complete, practical and mathematical treatment of microwave LCbased oscillators using bipolar, MESFET, and CMOS transistors

Ulrich L. Rohde

Microwave Systems Department of Technical Informatics University of the Armed Forces, Munich, Germany

10:30 am – 12:00 pm Room: S2-180 Tuesday October 8th, 2024 (Extended session with Q&A 12:30 pm – 2:30 pm)

Zoom Link: https://mitll.zoomgov.com/j/1610670756?pwd=PvwQIth7sUhE2Da3pifaKHras72sby.1

Based in part on the following books:

WILEY

Abstract

The design of RF/microwave oscillators has been, and continues to be, the subject of many publications. Historically, oscillators have been designed largely based on past experience with mostly successful designs, and to a lesser degree on experimental data. *Furthermore, high-resolution* test equipment for validation of device phase noise has only become available in the last decade or so, and accurate measurement can still take hours. For a designer, however, it is preferable to start from a set of specifications and then apply a rigorous and advanced mathematics-based design procedure. In this talk, we will present linear data-based, measured large-signal-based, and non-linear Bessel function-based treatments of RF/microwave oscillators. The discussion will include LC-based oscillators, such as those using bipolar, MESFET, and CMOS transistors, as well as the design of high-performance, lowphase-noise oscillators, ranging from VHF crystal resonators to YIG oscillators, and their measured data.